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The laminar boundary layer is studied for a binary mixture in the case when 
large blowing takes place from the streamlined surface. Velocity, concentra- 
tion and temperature distributions within the boundary layer are obtained, for- 

mulas for computing the distance to the “line of spreading” are given and ex- 

pressions for the velocity, concentration and temperature gradients at the sur- 

face of the body related to the magnitude of the blowing, are derived. 
It was shown earlier n] that the concentration and temperature gradients at 

the separation point on the body decrease exponentially with increasing blow- 
ing ; the author of @] obtained the power dependence on the blowing every- 
where, except at the separation point. The present paper gives expressions 

containing both these results and an estimate of the region of validity for each 
of them. 

1. The laminar boundary layer equations for a binary mixture have the form [3] 
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‘2: <.?I! 

11 (E) = 2 -g , a(E)=g$ 
t? 

I= ;t 

LL “I’ 
Here TJ and 6 are dimensionless coordinates along the normal and the surface, respect- 
ively, f is the modified stream function (ji -= u / U, is the dimensionless velocity), 
8 = T / T, is the dimensionless temperature, c and c,,denote the concentration and 

the heat capacity of a single component, cl, and p denote the heat capacity and the 

density of the mixture, S is the Schmidt number, (J is the Prandtl number, k = 0 and 
I? = 1 for the plane and the axisymmetric flow, respectively. The subscript e denotes 

the outer boundary of the boundary layer and W dendtes the surface of the body. 

The boundary conditions at the surface of the body are 

fn’ = 0, c = CW (E), fl = % (8 
wnen t] = 0 

f (f, 0) + w (E, 0) = G (E) = - QP (p& 

and at the outer boundary of the boundary layer 

fn’ = 1, c = c,, 0 = 1 when rl = DC 

Here c (k) is a known smooth function. The condition of large blowing means that the 
absolute magnitude of G (E) 1s so large, that l/G (0) can be regarded as a small para- 

meter. 

To obtain an explicit expression for the small parameter in (1. l), we introduce a new 
variable 

h = f (Et rl) i f (L 0) (4.2) 
and new unknown functions 

z (E, II) = 
( i 
+ 2 = f” (j, 0) (i&‘)‘, c (L 11) = c (6, rl (E, IL)), 

e 
0 (6, IL) = 0 (E, q (E, h]) 

Then the system (1.1) becomes (1.3) 

A (6) hz,,’ - &’ - 2.1 

a = - f (0, 0) - - G(O), a(E) = ;* ) A(‘,)=lfa~~ 
-a Y 

with the boundary conditions 

5 (‘& 1) = 0, c (Z, 1) = c I’ (C), 0 (E, 1) = O,,’ (6) 
z(E. - w) = 1, c(E, - w) 7= c l?, e(E,-m)=l 

The quantity 1.‘02 is the small parameter. The problem formulated pertains to the 

class of problems of equations with a small parameter accompanying the higher order 
derivatives, the solution of which suffers a discontinuity, in the limit, at an internal point 
of the region [4]. An asymptotic solution of this problem is obtained below in Sect. 2. 

2. The equation of state makes it possible to express the quantity PC / p for a binary 
mixture in the form of a product 
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P 
p - f%(c), h(c) = 

1 ‘-(y-1)c 

rd 1 i-(;-l)Cy (2.1) 
Here 1 i y is the ratio of molecular weights of the two components, their respective 

concentrations equal to c and ( 1 - c). Inserting (2. I) into (1.4) we solve the degene- 

rate (with czm2 = 0) problem, first for the concentration, then for the temperature and 

finally for the velocity. We precede this bv infroducing the function F in the following 

manner: F(t) = E if t = Eu” (j,.i.e. F (t) is a solution of the equation Fa”(F)= 
t. Taking into account the fact that a (6) = f (E. 0) / f (0, 0) can easily be ob- 

tained from the boundary condition 

f (El 0) -t- Xfi’ K, 0) r= G (U 

we shall regard the function F as known for each concrete problem. Thus, e.g. for the 

constant rate of blowing u (E, 0) = f (0, 0)) we obtain F (t)~ t. 
When K2 = 0 , the solution of (1.4) with (2.1) taken into account has the form 

c m-7 (1 - U) c,,, (I;,) + c,U 

o=lJ : (i-U)yg 
F. 

c _ 1 
z = lr ~- (1 - Ii)%,, (2.2) 

where F, = F ([a’ (~)I?) and U -= U (/ ) I is a symmetrical unit function 

1 

0, ll<O 

l? (11) = ‘12, t1 =z 0 

1, h>fl 

We assume here that c,, depends only on concentration. For an incompressible medium 

(p,: / p = 1) the degenerate equation for the velocity becomes independent of the other 

two equations. The solution has the form 
u 2 (P*) 

1 :i--(l- “‘k 

The absence ofa discontinuity on the line h = 0 represents an interesting feature of this 

solution. According to [4], the formulas (2.2) yield the limiting form of the actual solu- 

tion ontside the line h = 0, when a - 00. A more accurate approximation to the 
actual solution can be obtained by seeking the solutions of (1.4) in the form of asymp- 
totic series 

t-7 f, 0) == (20, co, 0,) + 4 (21, Cl, 0,) -;- , . . (2.3) 

It is evident that z,,. cO and O,are given by (8.2). For cl, 8, and z1 the solution near 

the surface of the body is as follows: 

i 
(‘1= f I ’ A (t, A*) twLa-” (t) dt 

1.‘. 

(2.4) 
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where the following expansions are utilized 

CPW = CPlC + cpz(l - 4 = iCp2 + (Cp1 - C7j2)COJ + cc2(CPl - cp2)c1 _t . . .= 

= CF' + u-2$) + . . . ( PeIP = eoho + a-*pJL, + 8Ohl)f . . . 

,J& 
0 
= ~+(T--t)s, 

i+ (7 - f)c, ' 

Al= (T-l1)?1 

l+(Y--I)ceT 

(4 s9 5) = (I (Co, 00)s s(co,eo), 3(CO, 00)) + O(0) 

The function A is determined by c,, 8, and zo, the function B by Cg 00, ZO and C1 
and the function C by co, t3,, zo, cI and 0,. Near the outer boundary for i > 1 we 
have Ci = Oi = pi = 0. 

The solutions (2.2) and (2.4) with (1.2) and (1.3) taken into account, make it possible 
to obtain the velocity, concentration and temperature derivatives with respect to 11 

Thus at the surface of the body we have 

U,’ (E, 0) = - G-1 (E) A 8 + 0 (a-j) 
II 

cll’ (5, 0) = c-” (E) $ + 2&’ + 0 (CL-“) (2.5) 
1” I,> 

8,‘(E,O)= C_“(E) 
[ 
~~(2~0,,.,‘+~0,,.)+ (& 1q&q-q -j- 0 (a-“) 

IL /,i , *: pl: 1” 

Similar results at the surface of the body were obtained in c2] directly from the initial 

equations. Comparison with numerical results r2] shows good agreement even for ~~22. 
We can use this fact to assert that the solutions (2.2). (2.4) can be used in the case of 

completely real blowing. 
The last expression of (2.2) yields the distance q,, to the line of spreading h = 0 

(2.6) 

qo)‘q == 2+ q&q:)‘; ;- (fy{[l -I- o&y-“- 1) +o(ugb) 

where B is the beta function. 
.I 

In Sect. 3 which follows, we seek a solution yielding more accurate quantities T)(“), 

(G’),,, and h’),,.. 

3. As we know D], in the vicinity of the front stagnation point (% = 0) the quanti- 

ties (cg,‘) ,, and (0 ,,‘),,, are exponentially small in 19. Since the series solution (2.3) 
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does not yield such a relationship, we propose to seek a solution of the second and third 
equation of (1.4) in the form of a sum of two functions, c = c(t) -I cC2) and (j z 

0 (,) ,- (jV2) such, that CC,) and C)(t) satisfy the equations 

with the boundary conditions 

Cl)> ‘E, 2) r c:: (U), %, G, 1) = f&L, (0) 
lr. 41) I*. - 9) z.7 CL, Q(L) (E, - 30) = 1 

Then c(a) and f&, will satisfy the equations 

with the boundary conditions 

CO) (L 1) = c,,, (5) - c,, (O), %) (5 1) = 0,” C’s) - O,,! (0) 
C(Z) (5, - =) = O(2) (E, - cx) = 0 

The coefficients 1, 8 etc. themselves are in fact dependent on c and 0, therefore 

such a separation can only be performed formally, assuming that all coeffcients in(1.4) 

are known functions of % and h. At some distance from the line h = 0 , these coeffi- 

cients can be computed using the solutions (2.2) and (2.4). The solutions Cc21 and 8,) 

should be determined afterC(t) and &,,have been found. Then the corresponding terms 
in (3.2) dependent on c(r) and tt,,) will be known functions of % and h Solutions of the 
Eqs. (3.1) can be written in the form 

$e (;, /I) = a2u2 (5) ./I (Q + h’dh’ f- 1 cp1 ;- “” Lc,.‘dh’ 
s 

from which we have 
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Here L is the Lewis number. Solutions (2.2) are used to compute the integrals in (3.4). 
Then, since a large parameter a2 appears in the exponential curve index, the Laplace 

formula is employed to perform the asymptotic integration [3] which yields 

1 s 
(c&J, = 3 (c, - c, (0)) ($&)"'0XP [ - G (El f (E! 0) 11; hdh] 

O C,(E) = r/$[(-$y)-t (+);I 
Here the subscript (0) indicates that the quantity in question is taken at h = 0. The 

expression for (O{,, J, is obtained from (3.5) by replacing ,!$ bY 0 and Cl WY c2 (E) 

(3.5) 

01 = (CPl - CP2) 1 L c 
6 

cp (cw (F*)),‘dh, 92 = + @,I1 - cpd (ce- CUJ (0)) x 

x [MO, -- ul 
Expressions of the type (s/,?l/q co) and the integrals from zero to unity are obtained 

using the solutions (2.2) and (2.4) on the interval 0 ( h < 1. At the front stagnation 
point (g = 0) we have 

C2 (0) = Jf [ 52 (2)+” + ;k”Z,“$$ esp {+ (cpl - CPJ (C, - C, (0)) X 

and, similarly to n], we obtain 

* s 
c 

T hdh = s, (0) c [so + 
6 ll/z 6 

cPzl + 0 (~-~)]-‘:*hdl~ = S,,, (0) [& B (a , +) x 

x (%)“‘*- +l(a-4), A*= ~[~(+lj(l+;] 

where 4 is the psi function. 
The small parameter ceases to exert an influence in the (1 / a)-neighborhood of the 

line h = 0 and the asymptotic solutions of Sect. 2 are no longer valid. Therefore, in 
order for the formulas (3.3) and (3.4) to yield quantitatively correct results, we must 
obtain a solution near the line h = 0. The case of homogeneous medium in the Appen- 
dix illustrates the method of obtaining an approximate solution near this line. Applying 
the same method here, we obtain the following functions for the separation point near 
the line h = 0 : 
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(3.7) 

where Q> is the error integral. The solution for 8 is obtained from (3.7) by replacing 
c, by unity, c, by 8, and S by U 
Equations (3.3) contain E only as 

a parameter. The functions c(,) 
and (l(r) become the main contri- 

I 

butors to the quantities (C,,‘)W and 

X (%'), near the point E =- 0, there- 

3Q fore use of the expressions (3.6) and 

(3.7) is suggested for computing 

Fig. 1 the integrals in (3.3) and (3.4) near 
the line /L : 0 , assuming that cw, 

L &l = s (CW, 0,) t e c, in these expressions are functions of g. Then the form of 

(3.5) will be preserved, with cr replaced by c, 

c,= 5 
-00 

y ‘p, esp [ - + (ka + (py (j)] df $- [exp ‘ps (0)l 1 F v7 exPcPl0df 
0 

5 

‘r:lJ = 5 I,: 
p, -‘,z 

( 1 9 97=1/z:* 

cpl-c 
- 

i, 
cps = - pz LCf’ 

,I cP 

f 

s(f) = - c i((P7 - cpdf -I-- cpsl df', 'PlO = - f (lf?i'/- %)W , 

Here 2 (f) = z (-“h / a) is given by (3.6). 

P 

(I, 1, cp and L are functions of 

8 (f) = tJ (- I1 / ) cz and c (f) = c (--i! / U) is given by (3.7). The functions(3.6) 
and (3.7) can also be used for the more accurate estimation of the distance to the line 
of spreading h = U. Thus, the expressions (2.7) for the separation point should be sup- 
plemented by the following term: 

q’(x)= j:[x-t (1-x)(I)(t)l-l}dt 

Figure 1 depicts the function cp (x)- ” 
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Were& and Bi are the coefficients of expansions of the right-hand sides of { 3.2) into 
series in ’ / aa. Formulas (3.8) yield expressions for (C;r, ,,)w and (0;,, ?), at the sur- 
face of the body, which are identical with those in (2.5). Combining the results obtained 

These formulas show that, with increasing blowing,the concentration and temperature 
gradients decrease exponentially at the surface of the body near the separation point, 

and according to a power law further away along the surface. The latter is true if 

C,,(E)+eonst, T,,(E)+ eonst and 5,,:+& otherwise the exponent&al dependence is 
retained over the whole surface. 

Assuming the blowing fixed, let us estimate the quantity E* (CC) where both terms 

(power and exponential) contribute equally. Assuming that all functions defined at the 
surface of the bady are sufficiently smooth and that E* itself is small. we have 

for the concentration gradient and 
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for the temperature gradient. The last formula refers to a plane flow around a blunt 

body when the function u,s (E) is proportional to E for its small value. In the more 
general case we have 

E* 5 [@clip (- a2n,)] / j 0 (1 - 5,) + 0 (T& 1 n, > 0 rz2 > 0, 

and the formula cannot be written in its exact form unless the actual form of U, (x) is 

known. 
The last three formulas show that the region in which the exponential term in (3.9) 

exerts a predominant influence, decreases with increasing blowing. On the other hand, 
the same region increases with decreasing c,~‘, T,;’ and (1 - 5,). 

4, Appsndix. To avoid unnecessary tedium, we illustrate the method of obtain- 
ing an approximate solution near the line e = 0 by considering the particular case of 
a homogeneous medium. Then r’= 1 and according to (2.1) pe I p = 6. Equations 
(1.4) (with E = u = 1) yield the following set of equations at the separation point ,!, =0: 

FM;, + 2h {6 - 2) = - r-s I/; Z;;jL 

he,’ = - u-2 ( JGFlh’),,r 

with the boundary conditions 
z = 0, 6 = 6, when h = 1 

z= 1, 6 = 1 when h = - cx 

Such a problem was solved earlier [6] on a digital computer and it will be expedient 
to compare the approximate solutions obtained in the present paper with the numerical 

ones. 
Near the boundary IL = 1 the solution is sought in the form of asymptotic series 

(2.3) where 1 

z. =ew(i - hZA), Zl = o~zn (2h - 1) h2” { (1 - @) t-3 & 
i; 

0, = on. oi = 0 (i > 1) 

To obtain a solution near the line h = 0, we extend the variable f = - ah and seek 

a solution for l/ZZZifU + j.2; + 2h (e - Z) = 0 (1.1) 

(i/%,$’ + ie; = 0, 2 = 2 (i), 6 = @ (i) 

in the form of series 1 
(2, 9) = (20, Q,,) -+ -,21\ (21, @I) +. . . (4.2) 

with the boundary conditions 

2, = Q, + ow, z,+ - ew(-- j)"12, 8, -.+ 0 as ./- - 123 (1.3) 

Z*=Bo+ 1, z1= 81 -to as t+ 1% 

In [6 J the problem (4.1) - (4.3) is solved numerically. Below we give a method of 
obtaining an approximate analytic expression for the functions &, and 8,. 

We note that if 6,, in the equation for .a0 is assumed to be a known function of h, then 
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the function -0D 

z,, = 2hhaa 

is 

80 (5) 5- 
2A-1 ds 

is a solution satisfying the condition z,, (-05) 3 I while the function 

1 
20 = 2Ah’* 

5 
Cl0 (z) x-a_1 ds 

h 

is a solution satisfying the condition Z, (1) = O. When h -+ 0, both these functions tend 

to the common quantity O. (0). We therefore assume that Z,(O) = 0, (0) (analogous 

assumption that &J (0) = (o, / P)~,,,) is used in deriving (3.6) ). We also assume that 

0, (0) = ‘/2 [e ( -CC) + 0 (LX)]. The latter assumption is not necessary, but when used, 
it yields a solution which is closer to the exact one. In deriving (3.7) it is similarly 

assumed that Oto, = l/z (1 + tlw) and CO = I/X (c, -j- cw). Furthermore, the functions Z, 

and 0, in Eqs. (4.1) which are regarded as coefficients of these equations, are replaced 
in the region - 00 < f < 0 by their limiting value O,, and in the region O < f < 00 

by unity. The resulting “linearized” equations are then solved with the boundary con- 

ditions (4.3) and a supplementary condition 2, (0) = 00(o) = I/Z (1 + O,). Then we have 

(4.4) 

where @ is the error integral. The solution (4.4) enables us to obtain an acceptable 

agreement with the solutions for Z, and 0,, obtained by numerical methods. 

I 

0.5 

0 I f 
u 

Fig. 2 

ff 2 

Fig. 3 

Figure 2 depicts a plot of the function 8, for O, = 0.1 , the approximate solution 

according to ihe formula (4.4) denoted by I and the numerical solutions [6] for A = 1 
and A = 0.1 denoted by ,? and 3, respectively. Figure 3 gives the plots, also for 

0, = 0.1 , of 0, for the approximate (formula (4.4) ) and numerical [S] solutions de- 
noted respectively by I and ;! (curve 2 corresponds to both, A = 1 and A = 0.1). 
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Comparison of these plots shows the divergence between them is small , we can there- 
fore expect that the formulas (3.6) and (3.7) also yield an acceptable accuracy. We 
note that (4.4) and (3.6) do not contain A. This is due to the fact that the difference 

(2, - tiO) (or [Z - (pc / p)]) respectively) is sma& We also note that by virtue of the 

specific character of the method under consideration, the formula for t) (an analog of 

(3.7) ) does not take the difference (cpi - cps) into account. This can be avoided by 

either rejecting the complementary assumption that 6,,, = 112 (I + 6,,,), or by using 
the function (3.7) instead of the discontinuous solution (2.2) to define cf’ in the equa- 

tion for 6 . 
In conclusion we discuss the method of obtaining (6,‘), when 4 = 0 , with the solu- 

tion (4.4) taken into account. We note that 

We decompose the integral appearing in the right-hand side into two terms 

+ $expx(-a, 

b fdf 

1 f 
h’dh’ 

x(a,b)=- - 
s o Ifi ’ a2hl/lo3- s 

As in [6], we construct the combined solution in the following manner: 

8 = z. + 2, - 0, + ~-2~~ + 0 (6 -k a**) 

and respectively 
-f/s 

-x(-a, f)= -a* 
s 

(ZU + a-2z$1/2 hdh - 6 (1) + 0 (czm4 + a”*) 
1 

! 
6 (I) = - 

3 
(z;‘l’ - e-,2) ]‘dj’ 

--m 

When a -, oo, the first term in (4.6) is written as follows : 

-f/a 

a2 
s 

(z. + ae2z1)-‘:2 hdh = a”M - -$- j2e;‘,‘z + 0 (1 / a) 
1 

(4.6) 

1 

Al = ( (z,j + a%,)-” hdh 

Then in (4.5) we have 
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When f = 0 (1). we have on the interval f < 0 z0 = 61W + 0 (@A), therefore 

0 (ama + aLzA). Consequently 

X [I + 0 (a+ + am2*)] 

since the integrand function makes a significant contribution only in the region f < 0 
and f = 0 (1). Similarly we have 

m 

c e=P x (9, f) 
i 

+^c exp x* (9, f) - )I, K**o,f)=- 
’ f’df 

- 
fi 

& [ 1 + 0 (z-s* s -(1 6 

Therefore 

(Qu, = C;l (1 - BW) exp (- ?.W) [ 1 + 0 (a+ + aWan)] 

0 
1 

c5 - c exp A0 I - 2 f”(y-J~ + 6 (j)] * + [exp 6 P)l~ exp x* (0, 1) -$j=o- 
0 

The constant cs given in the above formula should be calculated by numerical methods. 

Following p] we can show that 

M = 6l;t/’ (2A)-’ B + r+A* + 0 (aW4) 

The author thanks G. A. Tirskii for continued interest shown. 
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